供稿 秦国友
广义相加模型已广泛应用于环境因素与健康效应的关联研究。广义相加模型相比广义线性模型,其优势在于可以同时评估环境因素对健康效应的线性及非线性关联。然而目前广泛应用的广义相加模型在拟合时间序列数据时,简单的假设观察值之间相互独立,用概率模型来估计参数。但是时间序列数据的观察值之间往往是不独立的,构建一种能考虑到时间序列观察值自相关特征的模型是环境因素与健康效应关联研究亟需解决的问题之一。环境因素对健康效应影响一般都具有延迟效应,这种延迟效应不仅仅是发生延迟某1天,而是关于延迟天数的效应分布。
赵耐青教授课题组引入了混合广义相加模型结合延迟效应分布来解决上述问题。在广义相加模型的基础上,混合广义相加模型额外加入了随机效应来校正时间序列数据的自相关性并且借助环境延迟加权方法对气温延迟效应分布进行估计。课题组与上海市医保中心合作,将此模型应用于评价上海市老年人群中气温与脑梗发病之间的关联。研究广义相加模型的残差自相关函数图和偏自相关函数图存在很多相关性超过0.1的情况,而混合广义相加模型的自相关和偏自相关都处于-0.1和0.1之间,意味着混合广义相加模型在处理时间序列数据时优于一般的广义相加模型。此外,模型结果显示,当平均气温低于和高于27℃时,气温每升高1℃,相应的65岁以上男性人群的脑梗发病风险会分别降低0.95%和0.34%;当平均气温低于和高于8℃时,气温每升高1℃,65岁以上女性的脑梗发病风险会分别增加0.34%和降低0.92%,并且女性的气温延迟效应分布离散程度较小,气温延迟效应峰值在延迟第1天附近,而男性的气温延迟效应离散程度较大,气温延迟效应峰值在延迟第2天附近。
混合广义相加模型因其考虑到了时间序列数据自相关的特征,在拟合时间序列数据时优于一般的广义相加模型,借助环境因素延迟加权方法可以对环境因素延迟效应分布进行估计。因此,我们推荐应用混合广义相加模型和环境因素延迟加权方法到今后的环境风险因素与健康效应的时间序列研究中。此项研究结果已于2016年1月11日发表在Scientific Reports(http://www.nature.com/articles/srep19052),杂志影响因子为5.578。赵耐青教授和王锡玲老师是此项研究的共同通讯作者。
我院教师受邀出席2025年“院士专家进校园”暨第五期上海市“双名工程”研修活动
羽你同行,共促健康——首届复旦公卫-徐汇疾控(卫监)羽毛球友谊赛圆满落幕
我院何纳课题组最新研究揭示与HIV感染者死亡风险相关的蛋白标志物
董瑞华课题组合作研究发现微塑料经呼吸道暴露与社区获得性肺炎恶化有关
复旦大学公共卫生学院召开公共卫生与预防医学专业类“101计划”核心实践项目建设推进会
国家卫健委卫生技术评估重点实验联合国家呼吸医学中心共同发布《基于真实世界数据的无管微创应用于肺结节切除术的卫生技术评估》报告
拥抱新机遇、探索新领域——2025上海药物经济学论坛成功举办
陈仁杰团队联合研究揭示热浪导致的心脏病死亡负担可能被低估